Hitch-Hacker’s Guide to the Atari Digital Vector Generator

Philip Pemberton
http://www.philpem.me.uk/

September 18, 2006

1 Introduction

Over the past few years, interest in the emulation of video games has been increas-
ing rapidly. Modern computer hardware has allowed arcade games like Asteroids
and Star Wars to be accurately simulated on a commonly-available home com-
puter system. Although Asteroids was one of the first games to be emulated, very
little documentation exists on the hardware, beyond the memory maps and notes
in the MAME source code.

One of the more unusual parts of the Asteroids hardware is the Digital Vector
Generator, shown on Sheet 2A of the Asteroids schematic set. Outside of Atari,
very little documentation exists on it. In this article, | will explain how the DVG
works, and how to write code for it.

This article is intended to supplement the notes included in the Asteroids schemat-
ics, not replace them. It also concentrates more on the programming side of the
DVG, rather than attempting to explain the complexities of the DVG circuitry.

2 Thanks and Acknowledgements

Thanks are due to the following people, who assisted (either directly or indirectly)
in the creation of this document:

e Jed Margolin (http://www.jmargolin.com) — Wrote the article “The Secret
Lives of Vector Generators”, which explains some of the inner workings of the
Atari AVG and DVG. He also explained (in an e-mail) how the DVG represents
coordinates.

e Howard Delman (http://www.rawbw.com/~delman/) — Designer of the DVG.
Answered a few technical questions on the DVG hardware.

e Chris Pile (http://web.archive.org/*/http://members.tripod.com/asteroids/)
— Documented part of the DVG, and published his notes online (filename:
roidinfo.zip). Note that the original site has ceased to exist, hence the link
to the Web Archive mirror of the same page.

http://www.jmargolin.com
http://www.rawbw.com/~delman/
http://web.archive.org/*/http://members.tripod.com/asteroids/

Philip Pemberton http://www.philpem.me.uk/

e Eric Smith (http://www.brouhaha.com/~eric/— Released the source code
to the VECSIM emulator, which was used to get a basic overview of the DVG
instruction set.

1. Change log

e 18 September 2006 : Added documentation on the '00h’ instruction opcode.

3 Documentation conventions

1. Number formats

Format Type Examples
h suffix | Hexadecimal (base 16) number | 02h, FDh

d suffix | Decimal (base 10) number 104, 93d

b suffix | Binary (base 2) number 0100b, 0111 0101b

2. Typesetting conventions

Format Type Examples
Typewriter | Part designation, signal, instruction code | DMALD, DVX[11..0]

4 So what is the DVG?

The Digital Vector Generator — or DVG — is a custom-designed CPU, built entirely
from small-scale TTL ICs. It has an architecture totally unlike that of any CPU that
existed at the time, and was designed specifically to drive vector-beam monitors.
This was done because no CPU available at the time Asteroids was designed
had enough power to manage game logic and draw vectors at the same time.
Offloading the task of drawing the display on to the DVG allows the CPU to be
dedicated to the task of running the game logic.
The DVG features:

e 12-bit program counter, with 13-bit address space

Four-level stack

State machine microsequencer with eight micro-instructions

Vector timer

Two 12-bit binary rate multipliers to vary the timing relationship between the
X and Y vectors

16-level brightness control

1024x1024 display resolution

Hitch-Hacker’s Guide to the Atari Digital Vector Generator 2

http://www.brouhaha.com/~eric/

Philip Pemberton http://www.philpem.me.uk/

5 Coordinate System

Absolute coordinates in DVG terms are expressed as binary numbers from O to
1023 in the form (x, y), where (0, 0) is the top-left of the screen area, (511,
511) is the centre of the screen, and (1023, 1023) is the bottom-right of the
screen area.

Relative coordinates are expressed in sign-magnitude form, and are processed
using binary normalisation to ensure that the vectors they represent are drawn as
fast as possible. Sign-magnitude form stores the absolute value of the number in
the least significant bits, and the sign in the most significant bit. The sign bit on the
DVG is high when a number is negative. As a consequence of this, there are two
ways to represent zero. Relative coordinates are used by all the vector drawing
instructions.

Absolute coordinates are expressed in two’s complement form. When the most
significant bit is set, the number is taken to be negative. To convert a negative
number back into its absolute value, invert all the bits in the word and add one to
the result. Absolute coordinates are only used by the LABS instruction.

6 Reset Sequence

When the DVG’s RESET input goes active, the following actions are performed by
the DVG circuitry at roughly the same time:

e Instruction latch F7 and Y offset latch H7 are cleared to zero
o State flip-flop D8 is cleared to zero

e HALT flip-flop A9 is set; HALT and HALT go active

The DVG will hold in state 0 until the 6502 asserts the DMAGO line. This resets
the HALT flip-flop, causing HALT and HALT to be deasserted, thus releasing the halt
state and allowing the state machine to begin executing opcodes from the vector
instruction memory.

Once the DVG is released from the halt state, it will execute a DMALD micro-
instruction, which loads the program counter from DVY[11..0]. As DVY has been
cleared to zero during reset, the program counter will be set to zero.

After the program counter has been reset, the state machine will load the in-
struction latch, then the DVY latch. The program counter will be incremented after
the DVY latch has been loaded. If an opcode for a two-word instruction has been
loaded into the instruction latch, the SCALE and DVX latches will also be loaded from
the vector program memory, and the program counter will be incremented again.

Hitch-Hacker’s Guide to the Atari Digital Vector Generator 3

Philip Pemberton

http://www.philpem.me.uk/

7 Opcodes

VCTR

Opcodes 00h — 09h
Draw Long Vector

Word 0
15 14 13 12 11 10 9 5 4 3 2 1 0
| OPJ[3..0] | 0] Ys| Y[9..0] |
Word 1
15 14 13 12 11 10 9 5 4 3 2 1 0
| Z[3..0] | 0] Xs | X[9..0] |
Operands:
OP[3..0] Opcode nibble.
Ys Y axis sign bit.
Y[9..0] Y axis position.
Xs X axis sign bit.
X[9..0] X axis position.
Z[3..0] Vector intensity.

Draws a vector from the current X and Y position to the position specified by
X[9..0] and Y[9..0], with the intensity Z[3..0]. X and Y are binary normalised,
and the opcode value specifies the number of bits they have been shifted.

The following table illustrates how the length divisor and bit shift count relate to
the opcode value:

Opcode | Divisor | Bits shifted
09%h 1 0
08h 2 1
07h 4 2
06h 8 3
05h 16 4
04h 32 5
03h 64 6
02h 128 7
01lh 256 8
00h 512 9

For example, if a vector is drawn using opcode 09h, it will be drawn at the exact
length specified in the VCTR instruction. If that same vector is drawn again using
opcode 08h, it will be drawn half as long. The same rule applies to all the other

VCTR opcodes.

Hitch-Hacker’s Guide to the Atari Digital Vector Generator

Philip Pemberton http://www.philpem.me.uk/

LABS Opcode 0OAh
Load Absolute
Word 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| OPJ[3..0] | 0] Ys| Y[9..0] |
Word 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| SF[3..0] | 0] Xs | X[9..0] |
Operands:
OP[3..0] Opcode nibble.
Ys Y axis sign bit.
Y[9..0] Y axis position.
Xs X axis sign bit.

X[9..0] X axis position.
SF[3..0] Global scale factor.

Sets the X and Y position counters to the values stored in X[9..0] and Y[9..0]
respectively, and sets the global scale factor to the value stored in SF[3:0].

The global scale factor is applied to all vectors drawn after the LABS instruction
is executed, and decodes as follows:

Global scale | Scale factor

1111b /2 (divide by 2)
1110b /4 (divide by 4)
1101b /8 (divide by 8)
1100b /16 (divide by 16)
1011b /32 (divide by 32)
1010b /64 (divide by 64)
1001b /128 (divide by 128)
1000b [256? (unconfirmed)
0000b Zero? (unconfirmed)
0001b *2 (multiply by 2)
0010b *4 (multiply by 4)
0011b *8 (multiply by 8)
0100b * 16 (multiply by 16)
0101b *32 (multiply by 32)
0110b * 64 (multiply by 64)
0111b *128 (multiply by 128)

When a vector is drawn, the global scale factor is used to provide additional
scaling. In the case of Asteroids, this means that only one asteroid image has to
be stored in memory; the global scale factor allows that image to be expanded or
contracted as required.

Hitch-Hacker’s Guide to the Atari Digital Vector Generator 5

Philip Pemberton http://www.philpem.me.uk/

Opcode 0Bh
HALT Halt

Word 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| OPJ[3..0] |0|0|0|0|O|0|O|O|0|O|0|0|

Operands:
OP[3..0] Opcode nibble.

Halts the vector generator and blanks the screen.

JSRL Opcode 0Ch
Jump to subroutine
Word 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| OP[3..0] | A[11..0] |
Operands:

OP[3..0] Opcode nibble.
A[11..0] Target address.

Pushes the current value of the program counter onto the stack and sets the
program counter to the address stored in A[11..0].

RTSL Opcode ODh
Return from subroutine
Word 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| OP[3..0] [O] 0OJOoJOJOJOJO[O[OJO]O] O]

Operands:

OP[3..0] Opcode nibble.

Pulls an address off of the stack and loads it into the program counter.

Hitch-Hacker’s Guide to the Atari Digital Vector Generator 6

Philip Pemberton http://www.philpem.me.uk/

Opcode OEh
JMPL Ry

Word 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| OPJ[3..0] | A[11..0] |

Operands:
OP[3..0] Opcode nibble.
A[11..0] Target address.

Sets the program counter to the address stored in A[11..0] but, unlike JSRL,
does not push the return address on to the stack.

Hitch-Hacker’s Guide to the Atari Digital Vector Generator 7

Philip Pemberton http://www.philpem.me.uk/

SVEC Opcode OFh
Draw Short Vector
Word 0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| OP[3..0] | SFO [Xs [X[1..0] | Z[3..0] [SF1] Ys | Y[1.0] |
Operands:

OP[3..0] Opcode nibble.
X[1..0] X delta.

Xs X sign.
Y[1..0] X delta.
Ys X sign.

Z[3..0] Vector intensity.
SF[1..0] Scale factor.

Draws a vector from the current X and Y position to the position specified by
X[1..0] and Y[1..0], with the intensity Z[3..0]. This is a variant of the VCTR
instruction that is usually used for drawing very small vectors where absolute ac-
curacy is not required, for example text or numbers.

This instruction performs the same function as a VCTR instruction, but in a
more compact (and slightly faster) way. X[1..0] and Y[1..0] in an SVEC instruc-
tion only contain bits 8 and 9 (the two least significant bits of the high byte) of the
X and Y addresses. The scale factor decodes as follows:

Scale bits | Divisor | Bits shifted
00b (00d) | 128 7
01lb (01d) | 64 6
10b (02d) | 32 5
11b (03d) | 16 4

This means that the input coordinate values and scale factors decode to the
following vector lengths:

Scale Input
00b | 01b | 10b | 11b
00b (divide by 128) | 0 2 4 6
01b (divide by 64) 0 4 8 12
10b (divide by 32) 0 8 16 | 24
11b (divide by 16) 0 16 | 32 | 48

8 State Diagram

A state diagram for the DVG is shown in Figure[dl

Hitch-Hacker’s Guide to the Atari Digital Vector Generator 8

loresauas) 10199/ [eNBIQ Lely auy) 0] apINg S JayoeH-UdiH

HALT (halt mode)

not LABS

Halt strobe (B)

halted

not halted
DM A push (8)

JMP,RTS

M 0240240220
Go strobe (A)
SVEC

VCTR or LABS

not halted
Y

DM A load (9)

not halted LABS (load mode)

halted

not LABS

Figure 1: State transition diagram for the Atari DVG

uonaquiad dijiyd

pin-awrwiadjiyd-mmmy:dny

	Introduction
	Thanks and Acknowledgements
	Change log

	Documentation conventions
	Number formats
	Typesetting conventions

	So what is the DVG?
	Coordinate System
	Reset Sequence
	Opcodes
	VCTR --- Draw Long Vector
	LABS --- Load Absolute
	HALT --- Halt
	JSRL --- Jump to subroutine
	RTSL --- Return from subroutine
	JMPL --- Jump
	SVEC --- Draw Short Vector

	State Diagram

